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Abstract

Self-supervised learning (SSL) algorithms are gaining trac-
tion in various domains as a general paradigm of learning
representations from data, largely outperforming supervised
learning algorithms in tasks where labelled data is limited
and costly to collect. In this work, we analyse existing self-
supervised multivariate time series learning algorithms on
their ability to learn representations of weather features, eval-
uating them on weather-driven downstream applications in-
volving regression, classification and forecasting tasks. We
experiment with a two-step protocol. In the first step, we em-
ploy an SSL algorithm and learn generic weather representa-
tions from multivariate weather data. Then, in the next step,
we use these representations and train simple linear models
for multiple downstream tasks. Through our experiments on
air quality prediction tasks, we highlight the benefits of self-
supervised weather representations. The benefits include im-
proved performance across multiple tasks, the ability to gen-
eralize with limited in-task data, and a reduction in training
time and carbon emissions. We highlight several areas of fu-
ture work and the potential impact that such algorithms can
have on real-world problems. We expect such a direction to
be relevant in multiple weather-driven applications support-
ing climate change mitigation and adaptation efforts.

Introduction

The self-supervised learning (SSL) paradigm has gained
popularity recently to extract effective representations from
unlabeled data (Devlin et al. 2019; Brown et al. 2020). The
idea is to pretrain models by defining learning tasks called
pretext tasks on the unlabelled data itself without a spe-
cific target, and learning generic representations on the un-
labelled data by training models to solve the pretext task.
These representations are generic because the objectives
they are trained to optimize are independent of any down-
stream task. These pre-trained models are then adapted/fine-
tuned to a target task downstream and have often been ob-
served to outperform their supervised counterparts on the
downstream tasks. Further, in scenarios of limited labelled
data, they showcase huge improvements (Chen et al. 2020c;
Azizi et al. 2021). Self-supervised learning has already been
demonstrated as an effective learning strategy in the domains
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of natural language processing (Devlin et al. 2019), com-
puter vision (Chen et al. 2020a) and general time-series tasks
(Zerveas et al. 2021). However, these techniques have not
been aptly investigated in the context of weather data.

Weather data possess special characteristics such as being
multivariate, geospatial, having non-linear relationships be-
tween weather attributes, etc. In the past few years, different
types of weather data such as reanalysis, fore(hind)casts and
observation data are available from multiple sources with a
rich history. However, this readily available data is not ef-
fectively utilized in weather-driven applications, particularly
for applications with limited labelled data. Such limited data
scenarios arise in many domains: renewable energy gener-
ation forecasting when a new set of wind turbines are de-
ployed on a farm, limited sensor observation for air pollu-
tion prediction, crop yield prediction with limited historical
estimates available, and many more. Thus, self-supervised
representations of weather data can be a powerful approach
to address such practical problems across domains and ap-
plications. In this work, we focus on analysing the exist-
ing self-supervised techniques and evaluating the compara-
tive benefits of self-supervised representations vs traditional
end-to-end supervised approaches.

Related work
Self-Supervised Learning for Time Series

Self-supervised learning (SSL) has emerged as a general
paradigm for training machine learning models. It is capa-
ble of adopting self-defined pseudo labels as supervision
and use the learned representations for several downstream
tasks, avoiding the cost of annotating large-scale datasets
(Jaiswal et al. 2020). SSL has proven to achieve strong per-
formance in the domains of computer vision (Chen et al.
2020b; Wang et al. 2021; Azizi et al. 2021), natural language
processing (Gao, Yao, and Chen 2021; Logeswaran and Lee
2018) and speech recognition (Baevski et al. 2020; Xu et al.
2021). Recently, self-supervised learning approaches have
been proposed for multivariate time series. SPIRAL (Lei
et al. 2017) was the first to propose an unsupervised learn-
ing method with a simple objective, constraining the learned
representations to preserve pairwise similarities in the time
domain. Since then, the field has seen a lot more approaches
(Malhotra et al. 2017; Wu et al. 2018). Some of these



methods (Franceschi, Dieuleveut, and Jaggi 2019; Tonek-
aboni, Eytan, and Goldenberg 2021; Eldele et al. 2021) as-
sume transformation invariance properties and learn repre-
sentations. TST (Zerveas et al. 2021) learns a transformer
based model with a masked MSE loss. The TS2Vec ob-
jective(Yue et al. 2022) enforces the representation of a
sub-series to be consistent in different augmented contexts,
in both the instance-wise and temporal dimensions. The
CoST objective(Woo et al. 2022) proposes to learn disentan-
gled seasonal-trend representation using time-domain and a
frequency-domain constrastive losses.

These techniques have so far been evaluated only on
benchmark datasets, and have not been tested exclusively
for learning representations of weather data, evaluating on
real-world weather tasks. Such an investigation is necessary
to realize the potential of self-supervised representation in
weather-driven real-world problems.

Approach

We study self-supervised learning on weather data. Such
a pretrained model can be later adapted to multiple down-
stream tasks. In theory, such representations can be adapted
to any kind of task downstream. We experiment on regres-
sion and forecasting tasks. With any given weather dataset
and corresponding set of tasks, we consider a two-stage pro-
tocol:

1. A pretraining phase: This is independent of any down-
stream task. A self-supervised time-series representation
learning algorithm is trained on the weather features of
the data such as temperature, humidity, precipitation,
wind speed, wind direction, etc.

2. A finetuning phase: This is specific to every downstream
task. The representations from the pre-trained model are
utilized to train a simple model for the specific task(e.g.
an SVM for classification, or a ridge regression model
for a regression task).

Datasets

We conduct our initial experiments on tasks defined over
two weather-driven problems: air quality prediction and air
quality forecasting defined on the Beijing Multi-Site Air
Quality Dataset (Zhang et al. 2017). The Beijing Multi-
Site Air Quality Dataset (Zhang et al. 2017) contains 4
years of hourly air pollutants data from 12 nationally-
controlled air-quality monitoring sites, matched with the
nearest weather station. On the Beijing Multi-Site Air Qual-
ity Dataset (Zhang et al. 2017), we pretrain on 6 weather
variables, and later, we define 4 supervised downstream
tasks. The first two tasks are PM2.5 air quality regression
and PM10 air quality regression. In these two tasks, the
model is expected to output the target variable of a specific
hour, given the weather features at the specific hour. The
other two tasks are the forecasting variants of the same tasks.
Here, the difference is that the model is expected to output
the target variable for the next z hours, where z is set as
24, 48, 168, 336 and 720 in our experiments, denoting 1-day
ahead, 2-days ahead, 1-week ahead, 2-weeks ahead, and 1-
month ahead forecasting of the target variable respectively.

The Beijing Multi-Site Air Quality Dataset contains data
from multiple sites in Beijing. We use the Changping site’s
data for our preliminary experiments. The data in the Bei-
jing dataset is available from March 1st, 2013 to February
28th, 2017. We use a 60-20-20 train-validation-test split for
our experiments. In our limited data experiments, we use
the same splits for validation and test, but the train data is
reduced to 50%, 40%, 30% and 20% where the X% data is
taken from the end of the original training set. Therefore, in
all our experiments, the train, validation and test splits are
from consecutive dates.

The dataset contains weather variables such as temper-
ature, pressure etc. as well as PM2.5 and PM10 air pol-
lutant data. However, typically, given the geo-coordinates
of a location, we can pull the weather data for that loca-
tion from an external source. The weather variables and
data distribution from this external source can be kept
consistent across the finetuning tasks, removing the de-
pendency of the model on distribution of the weather
data available in the downstream tasks. Here, we use
the geo-coordinates of the site to get multiple weather
variables from ERA-5 reanalysis data (Hersbach et al.
2020) for the respective dates in the dataset. The 8
weather variables we use from ERA-5 are 10-meter-wind-
towards-north, Atmospheric-water-content, 10-meter-wind-
towards-east, Surface-pressure, Temperature, 100-meter-
wind-towards-north, 100-meter-wind-towards-east, total-
precipitation. Therefore, any SSL model is trained to take
as input these 8 variables along with a 7-dimensional encod-
ing of the date-time as covariates (therefore, 15 variables in
total) and outputs a high-dimensional embedding. Similarly,
a supervised model takes in the same 15 variables and is di-
rectly trained to output the specific target variable.

Implementation Details

For self-supervised learning/pretraining, we experimented
with 2 algorithms from the literature: TS2Vec(Yue et al.
2022) and CoST(Woo et al. 2022). We use the official code-
base of TS2Vec(Yue et al. 2022)! and CoST(Woo et al.
2022)? and for our experiments. Once the pretrained model
is obtained, we use the representations from the model on
the training data with a simple ridge regression model for
every downstream task. For every downstream task, we per-
form a hyperparameter search for the regularization strength
term « of the ridge regression model. We use an embedding
dimension of 512 throughout our experiments.

For each downstream task, we benchmark our results
against multiple supervised learning algorithms such as
RNNs(Sherstinsky 2020), LSTMs(Hochreiter and Schmid-
huber 1997), ResNet(He et al. 2016) and Inception-
Time(Ismail Fawaz et al. 2020) models. We use the TSAI li-
brary (Oguiza 2022) which contains interfaces to many such
time series models. For every supervised learning method,
we perform an extensive hyperparameter search to ensure
that the reported numbers are the best possible performances
of each of the methods.

"https://github.com/yuezhihan/ts2vec
*https://github.com/salesforce/CoST



PM2.5 Forecasting PM10 Forecasting
Methods 24-H 48-H | 168-H | 336-H | 720-H | 24-H 48-H | 168-H | 336-H | 720-H
CoST (SSL) 0.6914 | 0.7666 | 0.9301 | 0.9719 | 0.9954 | 0.6293 | 0.6951 | 0.8234 | 0.8594 | 0.8787
TS2Vec (SSL) 0.7174 | 0.798 | 0.9571 | 0.9982 | 1.03 0.645 | 0.7145 | 0.8396 | 0.8733 | 0.9018
RNN (SL) 0.7623 | 0.7909 | 0.9737 | 1.017 1.018 0.68 | 0.7252 | 0.845 | 0.8881 | 0.9066
LSTM (SL) 0.7203 | 0.7809 | 0.9725 | 0.9999 | 0.9969 | 0.6566 | 0.7062 | 0.867 | 0.8717 | 0.9002
InceptionTime (SL) | 0.7584 | 0.8606 | 0.9931 | 1.014 | 1.022 | 0.7153 | 0.7524 | 1.096 | 0.8719 | 0.8861
ResNet-18 (SL) 0.7658 | 0.8542 | 0.9755 | 1.013 | 0.9983 | 0.6744 | 0.7334 | 0.8812 | 0.8759 | 0.8894

Table 1: MSE on PM2.5 and PM10 Forecasting. SSL denotes self-supervised learning and SL denotes supervised learning.

PM2.5 Regression | PM10 Regression
Methods MAE | MSE | MAE | MSE
CoST (SSL) 0.5926 | 0.6788 | 0.5711 | 0.6199
TS2VEC (SSL) 0.631 0.809 0.61 0.72
RNN (SL) 0.6635 | 0.8833 | 0.6262 | 0.8407
LSTM (SL) 0.6389 | 0.8484 | 0.6054 | 0.7364
InceptionTime (SL) | 0.6625 | 0.9019 0.611 0.7401
ResNet-18 (SL) 0.662 0.9006 | 0.6405 | 0.7771

Table 2: Results on PM2.5 and PM10 regression tasks. SSL
denotes self-supervised and SL denotes supervised.

The difference between training the self-supervised and
supervised models is that in all our reported experiments
with self-supervised models (marked SSL), only one model
has been trained in common on the weather features. The
representations from the same model have been used for any
downstream task (eg. regression or forecasting at a horizon).
This is in contrast to training a supervised model (marked
SL) individually for each task. Hence, the total training time
with SSL and N tasks is significantly less than /N models
independently trained over each of the tasks through an SL
approach.

Results
Results on downstream tasks

Table 2 showcases the results of self-supervised and super-
vised learning approaches on the PM2.5 and PM10 regres-
sion tasks. Mean absolute error (MAE) and mean squared
error (MSE) are used as metrics here. It can be clearly seen
that CoST (Woo et al. 2022) outperforms all other methods
in both the regression tasks. TS2Vec also outperforms all
the supervised methods in terms of MSE in both the tasks,
closely beating or equalling RNNs and LSTMs in the PM10
regression task. However, CoST (Woo et al. 2022) achieves
much lesser MSE than other methods, and is consistently
better than its self-supervised competitor TS2Vec (Yue et al.
2022).

Table 1 showcases the mean-squared error (MSE) on fore-
casting tasks, for various forecasting horizons. Figure 1 plots
the MSE for the PM2.5 forecasting task across all consid-
ered horizons. The CoST (Woo et al. 2022) objective still
outperforms all other models, across both tasks and across
all forecasting horizons. TS2Vec (Yue et al. 2022), in most
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Figure 1: MSE on PM2.5 forecasting on various forecasting
horizons

cases, outperforms the supervised baselines. The SSL mod-
els largely outperform the supervised counterparts in the
short-range forecasting cases of 24 and 48 hour forecasting.

Varying the amount of labelled data in each
downstream task

Next, we vary the amount of training data available in each
task from 20% to 100%. When reducing the percentage of
data available, we always sample from the end of the original
100% of training data. For instance, if the original training
data is of 10 years from 2005 to 2015, then for an experiment
with 80 percent training data, we use the data of 8 years
from 2007 to 2015. The validation and test splits are kept
consistent for all experiments throughout the paper.

Figure 2 showcases the MSE of all methods on the PM2.5
regression task, varying the amount of labelled data from
20% to 100%. It can be seen that, while, SSL. methods also
encounter drop in performances when the training data is
brought down to certain levels (such as 40%), they still-
incur a less sharper drop in performance, and outperform
the supervised methods. Here, both TS2Vec and CoST con-
sistently maintain strong performances under limited data
conditions. The reason SSL methods maintain performance
better is because of the pretraining stage where the initial-
ized model itself offers strong representations on the data,
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Figure 2: MSE on PM2.5 regression varying the amount of
training data

hence the model is robust under limited data conditions
downstream. The supervised models train from scratch on
the downstream tasks and hence overfit in limited data se-
tups.

Future Work

We find encouraging benefits of using self-supervised learn-
ing (SSL) to learn weather representations, evaluating them
on weather-driven problems. We show how using SSL ben-
efits and compares to supervised methods in typical weather
tasks, and specifically under limited data conditions. As fu-
ture work, we are investigating how existing time-series
representations techniques generalize and perform in multi-
geolocated weather data scenarios such as multi-site pollu-
tion and renewable energy generation prediction. An effi-
cient representation of geo-locations and their characteris-
tics in an efficient manner would be beneficial as the model
would be able to leverage inter-location correlations during
learning and inference.
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