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Summary

Problem: Multivariate Probabilistic Time Series Prediction,

i.e., estimating the joint distribution of high-dimensional

multivariate time series

General-Purpose Models: We seek models that support

Check-Square Arbitrarily complex data distributions

Check-Square Heterogeneous/irregular sampling frequencies

Check-Square Hundreds of time series with missing data

Check-Square Deterministic covariates for conditioning (e.g., holidays)

Check-Square Tasks: forecasting, interpolation, and hybrids

Contributions:

We show that Transformer Attentional Copulas for Time

Series (TACTiS) [1], while flexible, are highly inefficient

We propose a simpler and faster approach to learning

valid attentional copulas and prove its correctness

We show that this results in significantly better training

dynamics and empirical results on real-world datasets

Main Takeaway

TACTiS-2 obtains better performance with lesser compute

in real-world forecasting tasks, compared to TACTiS
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Problem setting

Chevron-right Multivariate time series: a collection of univariate time series X def= {X1, . . . , Xn}, where each Xi
def= [Xi1, . . . , Xi,`i

] is a random
vector representing `i observations of some real-valued process in time

Chevron-right Additional data: for any realization xi
def= [xi1, . . . , xi,`i

] of Xi, each xij is paired with:

a timestamp, tij ∈ R marking its measurement time

a vector of covariates cij ∈ Rp that represents arbitrary additional information available

Chevron-right Learning Tasks: defined with the help of a mask mij ∈ {0, 1}, which determines if any Xij should be considered as observed

(mij = 1) or to be inferred (mij = 0)

Chevron-right Goal: estimating the joint distribution of missing values (mij = 0), given the observed ones (mij = 1), covariates, and timestamps:

Missing 
values

Observed
values

TimestampsCovariates

What is a copula?

Informally: a mathematical construct that expresses the coupling (dependency structure) of multiple random variables,

irrespective of their marginal distributions (individual structure)

According to Sklar’s theorem [3], the joint CDF of any random vector [X1, . . . , Xd] can be expressed as combination of:

The marginal CDF of each random variable Fi(xi)
def= P (Xi ≤ xi),

The copula: a distribution on the unit cube with CDF C : [0, 1]d → [0, 1] and U[0,1] marginals

P (X1 ≤ x1, . . . , Xd ≤ xd) = C
(
F1(x1), . . . , Fd(xd)

)

Improved Learning of Non-Parametric Copulas

Copula-Based Density Estimators [1]: Joint density decomposed into marginals and copula:

gφφφ

(
x1, . . . , xd

)
def= cφc

(
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(
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)
, . . . , Fφd

(
xd
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× fφ1

(
x1
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× · · · × fφd

(
xd

)
(1)

φφφ = {φ1, . . . , φd; φc} where {φi}d
i=1 are parameters of the marginal distributions, and φc are the parameters of the copula density cφc

estimated by minimizing negative log-likelihood:

arg min
φφφ

− E
x∼X

log gφφφ(x1, . . . , xd) (2)

LIGHTBULB Proposition 1: Problem (2) has infinitely many invalid solutions wherein cφc
is not the density function of a valid copula.

Exclamation The true marginals and copula can be entangled → Non-trivial to learn valid non-parametric copula-based density estimators.

Permutation-based Nonparametric Copulas (TACTiS): Nonparametric copulas learned using a permutation-based objective.

Considers an autoregressive factorization of cφc
according to an arbitrary permutation of the variables π = [π1, . . . , πd]:

cφφφπ
c
(u1, . . . , ud)

def= cφπ
c,1(uπ1) × cφπ

c,2(uπ2 | uπ1) × · · · × cφπ
c,d
(uπd

| uπ1, . . . , uπd−1) (3)

where uπk
= Fφπk

(
xπk

)
. Optimizes a permutation-based objective over Π, where Π is the set of all d! permutations:

arg min
φ1,...,φd,φπ

c

− E
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E
π∼Π

log cφπ
c
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Fφ1
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x1

)
, . . . , Fφd
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× fφ1

(
x1
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× · · · × fφd

(
xd

)
(4)

Times Limitations: The model needs the capacity to fit all d! permutations → results in slow convergence and sub-optimal solutions.

Two-Stage Nonparametric Copulas (ours): Learn marginal parameters (eq. (6)), then learn copula parameters (eq. (5)):

arg min
φc

− E
x∼X

log cφc

(
Fφ?

1(x1), . . . , Fφ?
d
(xd)

)
(5)

s.t. (φ?
1, . . . , φ?

d) ∈ arg min
φ1,...,φd

− E
x∼X

log
d∏

i=1
fφi

(xi) (6)

LIGHTBULB Proposition 2: Solving Problem (5) yields a solution to Problem (2) where cφc
is a valid copula. Proof builds on Sklar’s theorem [3].

Check Advantages: The model needs to fit just 1 permutation → simpler objective with faster convergence to better solutions.

Putting Theory into Practice
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Architecture of TACTiS-2: The two encoders serve to parametrize the decoder in the two stages of the training curriculum (bottom right).

Phase 1 solves Problem (6), while Phase 2 solves Problem (5).

Results

Mean CRPS-Sum values for the forecasting experiments (± standard errors). Lower is better. Best results in bold.

Model electricity fred-md kdd-cup solar-10min traffic Avg. Rank

Auto-ARIMA 0.077 ± 0.016 0.043 ± 0.005 0.625 ± 0.066 0.994 ± 0.216 0.222 ± 0.005 6.2 ± 0.3

ETS 0.059 ± 0.011 0.037 ± 0.010 0.408 ± 0.030 0.678 ± 0.097 0.353 ± 0.011 6.0 ± 0.2

TempFlow 0.075 ± 0.024 0.095 ± 0.004 0.250 ± 0.010 0.507 ± 0.034 0.242 ± 0.020 5.4 ± 0.2

SPD 0.062 ± 0.016 0.048 ± 0.011 0.319 ± 0.013 0.568 ± 0.061 0.228 ± 0.013 5.2 ± 0.3

TimeGrad 0.067 ± 0.028 0.094 ± 0.030 0.326 ± 0.024 0.540 ± 0.044 0.126 ± 0.019 5.0 ± 0.2

GPVar 0.035 ± 0.011 0.067 ± 0.008 0.290 ± 0.005 0.254 ± 0.028 0.145 ± 0.010 3.8 ± 0.2

TACTiS 0.021 ± 0.005 0.042 ± 0.009 0.237 ± 0.013 0.311 ± 0.061 0.071 ± 0.008 2.4 ± 0.2

TACTiS-2 0.020 ± 0.005 0.035 ± 0.005 0.234 ± 0.011 0.240 ± 0.027 0.078 ± 0.008 1.9 ± 0.2

Mean NLL values for forecasting experiments and training FLOP counts (± standard errors). Lower is better. Best results in bold. .

Model electricity fred-md kdd-cup solar-10min traffic

TACTiS NLL 11.028 ± 3.616 1.364 ± 0.253 2.281 ± 0.770 −2.572 ± 0.093 1.249 ± 0.080

FLOPs (×1016) 1.931 ± 0.182 1.956 ± 0.192 1.952 ± 0.208 0.174 ± 0.018 1.207 ± 0.517

TACTiS-2 NLL 10.674 ± 2.867 0.378 ± 0.076 1.055 ± 0.713 −4.333 ± 0.181 −0.358 ± 0.077

FLOPs (×1016) 0.623 ± 0.018 0.738 ± 0.022 0.324 ± 0.014 0.078 ± 0.005 0.289 ± 0.061

Example forecasts of TACTiS-2 Example interpolations by TACTiS (top) and TACTiS-2 (bottom)

Model flexibility

TACTiS-2 maintains the flexibility of TACTiS

Series 1

Series 2

5%-95% 10%-90% 25%-75% 50% Ground Truth

Example forecasts of TACTiS-2 on irregular and unevenly sampled data
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