TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series

Arjun Ashok¹²³ *Étienne Marcotte¹ *Valentina Zantedeschi¹ †Nicolas Chapados

¹ServiceNow Research ²Mila-Quebec AI Institute ³Université de Montréal

[∗]Equal Contribution †Equal Contribution

servicenow.

Summary

Problem: Multivariate Probabilistic Time Series Prediction, i.e., estimating the joint distribution of high-dimensional multivariate time series

General-Purpose Models: We seek models that support

- \blacktriangleright Arbitrarily complex data distributions
- \blacktriangleright Heterogeneous/irregular sampling frequencies
- \blacktriangleright Hundreds of time series with missing data
- \blacktriangleright Deterministic covariates for conditioning (e.g., holidays)
- \blacktriangleright Tasks: forecasting, interpolation, and hybrids

TACTiS-2 obtains better performance with lesser compute in real-world forecasting tasks, compared to TACTiS electricity 0.0 0.3 0.6 0.9 1.2 1.5 1.8 fred-md kdd-cup $FLOPs$ $(\times 10^{16})$ **TACTIS** IACTIS-2 (ours)

 $\Pi^{(o)}$

Contributions:

- We show that Transformer Attentional Copulas for Time Series (TACTiS) [\[1\]](#page-0-0), while flexible, are highly inefficient
- We propose a simpler and faster approach to learning valid attentional copulas and prove its correctness
- We show that this results in significantly **better** training dynamics and empirical results on real-world datasets

Main Takeaway

Problem setting

- \blacktriangleright **Multivariate time series:** a collection of univariate time series $\mathbf{X}\stackrel{\text{\tiny def}}{=} \{\mathbf{X}_1,\ldots,\mathbf{X}_n\}$, where each $\mathbf{X}_i\stackrel{\text{\tiny def}}{=} [X_{i1},\ldots,X_{i,\ell_i}]$ is a random vector representing ℓ_i observations of some real-valued process in time
- \blacktriangleright Additional data: for any realization $\mathbf{x}_i \stackrel{\text{\tiny def}}{=} [x_{i1}, \ldots, x_{i,\ell_i}]$ of \mathbf{X}_i , each x_{ij} is paired with:
- a timestamp, $t_{ij} \in \mathbb{R}$ marking its measurement time
- a vector of <u>covariates</u> $\mathbf{c}_{ij} \in \mathbb{R}^p$ that represents arbitrary additional information available
- **Examing Tasks:** defined with the help of a mask m_{ij} ∈ {0, 1}, which determines if any X_{ij} should be considered as observed $(m_{ij} = 1)$ or to be inferred $(m_{ij} = 0)$
- **Coal:** estimating the joint distribution of missing values ($m_{ij} = 0$), given the observed ones ($m_{ij} = 1$), covariates, and timestamps:

 $\boldsymbol{\phi} = \{\phi_1, \ldots, \phi_d; \phi_c\}$ where $\{\phi_i\}_{i=1}^d$ estimated by minimizing negative log-likelihood:

- $\pi_{c, 2} (u_{\pi_2} \mid u_{\pi_1}) \times \cdots \times c_{\phi_n}$ *π* $u_{\pi_d}^{\pi} (u_{\pi_d} \mid u_{\pi_1}, \ldots, u_{\pi_{d-1}})$) (3)
	-

Two-Stage Nonparametric Copulas (ours): Learn marginal parameters (eq. (6)), then learn copula parameters (eq. (5)): arg min *φc* − E **x**∼**X** $\log c_{\phi_c} \left(F_{\phi} \right)$ $s.t.$ (ϕ_1^{\star}) $\phi_d^{\star}, \ldots, \phi_d^{\star}$

 \bullet Proposition 2: Solving Problem [\(5\)](#page-0-3) yields a solution to Problem [\(2\)](#page-0-2) where c_{ϕ_c} is a valid copula. Proof builds on Sklar's theorem [\[3\]](#page-0-1). ◆ Advantages: The model needs to fit just 1 permutation \rightarrow simpler objective with faster convergence to better solutions.

What is a copula?

Informally: a mathematical construct that expresses the coupling (dependency structure) of multiple random variables, irrespective of their marginal distributions (individual structure) According to Sklar's theorem [\[3\]](#page-0-1), the **joint CDF** of any random vector $[X_1, \ldots, X_d]$ can be expressed as combination of:

- The **marginal** CDF of each random variable $F_i(x_i) \stackrel{\text{def}}{=} P(X_i \leq x_i)$,
- The copula: a distribution on the unit cube with CDF C : $[0, 1]^d$ → $[0, 1]$ and $U_{[0, 1]}$ marginals

$$
P(X_1 \leq x_1, \ldots, X_d \leq x_d) = C\big(F_1(x_1), \ldots, F_d(x_d)\big)
$$

Improved Learning of Non-Parametric Copulas

Copula-Based Density Estimators [\[1\]](#page-0-0): Joint density decompose

$$
g_{\boldsymbol{\phi}}\Big(x_1,\ldots,x_d\Big)\,\stackrel{\scriptscriptstyle\rm def}{=} c_{\phi_{\mathsf{c}}}\Big(F_{\phi_1}\!\!\left(x_1\right)\!,\ldots,F_{\phi_d}
$$

 $^d_{i=1}$ are parameters of the marginal distributions, and ϕ_c are the parameters of the copula density c_{ϕ_c}

(1)

$$
\underset{\phi}{\arg\min} \ -\underset{\mathbf{x} \sim \mathbf{X}}{\mathbb{E}} \]
$$

 \bullet Proposition 1: Problem [\(2\)](#page-0-2) has infinitely many invalid solutions wherein c_{ϕ_c} is not the density function of a valid copula. The true marginals and copula can be entangled \rightarrow Non-trivial to learn valid non-parametric copula-based density estimators.

$$
\log g_{\phi}(x_1,\ldots,x_d) \tag{2}
$$

Permutation-based Nonparametric Copulas (TACTiS): Nonparametric copulas learned using a permutation-based objective. Considers an autoregressive factorization of c_{ϕ_c} according to an arbitrary permutation of the variables $\pi=[\pi_1,\ldots,\pi_d]$: $c_{\boldsymbol{\phi}_c}$ ^{π} $\frac{d}{dx}(u_1, \ldots, u_d) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} c_{\phi}$ *π* $\pi_{c,1}^{\pi}(u_{\pi_1}) \times c_{\phi}$ *π*

where $u_{\pi_k}=F_{\phi_{\pi_k}}\!(x_{\pi_k})$. Optimizes a permutation-based objective over Π , where Π is the set of all $d!$ permutations: arg min ϕ_1 *,...,* ϕ_d *,* ϕ_c^{π} − E **x**∼**X** E *π*∼Π $\log c_{\phi_c^{\pi}}$ $\sqrt{ }$ $F_{\phi_1}\!(x_1),\ldots,F_{\phi_d}$

X Limitations: The model needs the capacity to fit all $d!$ permutations \rightarrow results in slow convergence and sub-optimal solutions.

$$
\ldots, F_{\phi_d}(x_d) \big) \times f_{\phi_1}(x_1) \times \cdots \times f_{\phi_d}(x_d) \tag{4}
$$

$$
\phi_1^{\star}(x_1), \dots, F_{\phi_d^{\star}}(x_d) \tag{5}
$$

$$
\begin{aligned} \n\check{d}) &\in \operatorname*{arg\,min}_{\phi_1, \dots, \phi_d} -\mathop{\mathbb{E}}_{\mathbf{x} \sim \mathbf{X}} \log \prod_{i=1} f_{\phi_i}(x_i) \n\end{aligned} \tag{6}
$$

Putting Theory into Practice

Architecture of TACTiS-2: The two encoders serve to parametrize the decoder in the two stages of the training curriculum (bottom right). Phase 1 solves Problem [\(6\)](#page-0-4), while Phase 2 solves Problem [\(5\)](#page-0-3).

¹² †Alexandre Drouin¹²

Results

Mean CRPS-Sum values for the forecasting experiments (± standard errors). Lower is better. Best results in bold.

Mean NLL values for forecasting experiments and training FLOP counts (± standard errors). Lower is better. Best results in bold.

Model flexibility

Example forecasts of TACTiS-2 on irregular and unevenly sampled data

References

[1] Alexandre Drouin, Étienne Marcotte, and Nicolas Chapados. TACTiS: Transformer-attentional copulas for time series. In *ICML*, 2022.

[2] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-dimensional multivariate forecasting with low-rank Gaussian copula processes.

-
- *NeurIPS*, 2019.
-

[3] Abe Sklar. Fonctions de répartition à *n* dimensions et leurs marges. *Publ. de l'Institut Statistique de l'Université de Paris*, 8:229–231, 1959.