Servicenow

Summary

Problem: Multivariate Probabilistic Time Series Prediction, i.e., estimating the joint distribution of high-dimensional multivariate time series

General-Purpose Models: We seek models that support

- Arbitrarily complex data distributions
- Heterogeneous/irregular sampling frequencies
- Hundreds of time series with missing data
- Deterministic covariates for conditioning (e.g., holidays)
- Tasks: forecasting, interpolation, and hybrids

Contributions:

- We show that Transformer Attentional Copulas for Time Series (TACTiS) [1], while flexible, are highly inefficient
- We propose a simpler and faster approach to learning valid attentional copulas and prove its correctness
- We show that this results in significantly better training dynamics and empirical results on real-world datasets

Main Takeaway

in real-world forecasting tasks, compared to TACTiS

Problem setting

- Multivariate time series: a collection of univariate time series $\mathbf{X} \stackrel{\text{\tiny def}}{=} \{\mathbf{X}_1, \dots, \mathbf{X}_n\}$, where each $\mathbf{X}_i \stackrel{\text{\tiny def}}{=} [X_{i1}, \dots, X_{i,\ell_i}]$ is a random vector representing ℓ_i observations of some real-valued process in time
- Additional data: for any realization $\mathbf{x}_i \stackrel{\text{\tiny def}}{=} [x_{i1}, \ldots, x_{i,\ell_i}]$ of \mathbf{X}_i , each x_{ij} is paired with:
- a timestamp, $t_{ij} \in \mathbb{R}$ marking its measurement time
- a vector of <u>covariates</u> $\mathbf{c}_{ij} \in \mathbb{R}^p$ that represents arbitrary additional information available
- > Learning Tasks: defined with the help of a mask $m_{ij} \in \{0,1\}$, which determines if any X_{ij} should be considered as observed $(m_{ij} = 1)$ or to be inferred $(m_{ij} = 0)$
- **Soluminal** Section $(m_{ij} = 0)$, given the observed ones $(m_{ij} = 1)$, covariates, and timestamps:

What is a copula?

Informally: a mathematical construct that expresses the coupling (dependency structure) of multiple random variables, irrespective of their marginal distributions (individual structure) According to Sklar's theorem [3], the joint CDF of any random vector $[X_1, \ldots, X_d]$ can be expressed as combination of:

- The marginal CDF of each random variable $F_i(x_i) \stackrel{\text{\tiny det}}{=} P(X_i \leq x_i)$,
- The copula: a distribution on the unit cube with CDF $C: [0,1]^d \rightarrow [0,1]$ and $U_{[0,1]}$ marginals

$$P(X_1 \le x_1, \dots, X_d \le x_d) = C(F_1(x_1), \dots, F_d(x_d))$$

TACTIS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series

Arjun Ashok¹²³ *Étienne Marcotte¹ *Valentina Zantedeschi¹ [†]Nicolas Chapados¹²

¹ServiceNow Research ²Mila-Quebec Al Institute ³Université de Montréal

TACTiS-2 obtains **better performance with lesser compute** electricity ----kdd-cup fred-md TACTIS TACTiS-2 (ours) 1.5 1.8 0.9 1.2 FLOPs (×10¹⁶)

 $\mathbf{T}^{(o)}$

Improved Learning of Non-Parametric Copulas

Copula-Based Density Estimators [1]: Joint density decompose

$$g_{\phi}(x_1, \dots, x_d) \stackrel{\text{def}}{=} c_{\phi_{\mathsf{C}}}\left(F_{\phi_1}(x_1), \dots, F_{\phi_d}(x_d)\right) \times f_{\phi_1}(x_1) \times \dots \times f_{\phi_d}(x_d) \tag{1}$$

 $\phi = \{\phi_1, \dots, \phi_d; \phi_c\}$ where $\{\phi_i\}_{i=1}^d$ are parameters of the marginal distributions, and ϕ_c are the parameters of the copula density c_{ϕ_c} estimated by minimizing negative log-likelihood:

$$\operatorname{arg\,min}_{\phi} \quad - \mathop{\mathbb{E}}_{\mathbf{x} \sim \mathbf{X}} \mathsf{I}$$

• Proposition 1: Problem (2) has infinitely many invalid solutions wherein c_{ϕ_c} is not the density function of a valid copula. The true marginals and copula can be entangled \rightarrow Non-trivial to learn valid non-parametric copula-based density estimators.

Permutation-based Nonparametric Copulas (TACTiS): Nonparametric copulas learned using a permutation-based objective. Considers an autoregressive factorization of c_{ϕ_c} according to an arbitrary permutation of the variables $\pi = [\pi_1, \ldots, \pi_d]$: $c_{\phi_{c}^{\pi}}(u_{1},\ldots,u_{d}) \stackrel{\text{\tiny def}}{=} c_{\phi_{c,1}^{\pi}}(u_{\pi_{1}}) \times c_{\phi_{c,2}^{\pi}}(u_{\pi_{2}} \mid u_{\pi_{1}}) \times \cdots \times c_{\phi_{c,d}^{\pi}}(u_{\pi_{d}} \mid u_{\pi_{1}},\ldots,u_{\pi_{d-1}})$

where $u_{\pi_k} = F_{\phi_{\pi_k}}(x_{\pi_k})$. Optimizes a permutation-based objective over Π , where Π is the set of all d! permutations: $\underset{\phi_1,\ldots,\phi_d,\phi_c^{\pi}}{\operatorname{arg\,min}} \quad - \underset{\mathbf{x}\sim\mathbf{X}}{\mathbb{E}} \underset{\pi\sim\Pi}{\mathbb{E}} \log c_{\phi_c^{\pi}} \left(F_{\phi_1}\!\left(x_1\right),\ldots,F_{\phi_d}\!\left(x_d\right) \right) \times f_{\phi_1}\!\left(x_1\right) \times \cdots \times f_{\phi_d}\!\left(x_d\right)$

 \times Limitations: The model needs the capacity to fit all d! permutations \rightarrow results in slow convergence and sub-optimal solutions.

Two-Stage Nonparametric Copulas (ours): Learn marginal parameters (eq. (6)), then learn copula parameters (eq. (5)): $\underset{\phi_{a}}{\operatorname{arg\,min}} \quad - \underset{\mathbf{x} \sim \mathbf{X}}{\mathbb{E}} \log c_{\phi_{c}} \left(F_{\phi_{1}^{\star}}(x_{1}), \dots, F_{\phi_{d}^{\star}}(x_{d}) \right)$ s.t.

 \checkmark Advantages: The model needs to fit just 1 permutation \rightarrow simpler objective with faster convergence to better solutions.

Putting Theory into Practice

Architecture of TACTiS-2: The two encoders serve to parametrize the decoder in the two stages of the training curriculum (bottom right). Phase 1 solves Problem (6), while Phase 2 solves Problem (5).

*Equal Contribution [†]Equal Contribution

[†]Alexandre Drouin¹²

ed ir	nto	margir	nals	and	copula:			
1	、	\	,	、		,	`	

$$\log g_{\phi}(x_1,\ldots,x_d)$$

- (3)
- (4)

- $(\phi_1^{\star}, \dots, \phi_d^{\star}) \in \operatorname*{arg\,min}_{\phi_1, \dots, \phi_d} \underset{\mathbf{x} \sim \mathbf{X}}{\mathbb{E}} \log \prod_{i=1} f_{\phi_i}(x_i)$
- **Proposition 2:** Solving Problem (5) yields a solution to Problem (2) where c_{ϕ_c} is a valid copula. Proof builds on Sklar's theorem [3].

- NeurIPS, 2019.

Results

Mean CRPS-Sum values for the forecasting experiments (\pm standard errors). Lower is better. Best results in bold.

del	electricity	fred-md	kdd-cup	solar-10min	traffic	Avg. Rank
RIMA	0.077 ± 0.016	0.043 ± 0.005	0.625 ± 0.066	0.994 ± 0.216	0.222 ± 0.005	6.2 ± 0.3
ETS	0.059 ± 0.011	0.037 ± 0.010	0.408 ± 0.030	0.678 ± 0.097	0.353 ± 0.011	6.0 ± 0.2
pFlow	0.075 ± 0.024	0.095 ± 0.004	0.250 ± 0.010	0.507 ± 0.034	0.242 ± 0.020	5.4 ± 0.2
SPD	0.062 ± 0.016	0.048 ± 0.011	0.319 ± 0.013	0.568 ± 0.061	0.228 ± 0.013	5.2 ± 0.3
eGrad	0.067 ± 0.028	0.094 ± 0.030	0.326 ± 0.024	0.540 ± 0.044	0.126 ± 0.019	5.0 ± 0.2
GPVar	0.035 ± 0.011	0.067 ± 0.008	0.290 ± 0.005	0.254 ± 0.028	0.145 ± 0.010	3.8 ± 0.2
ACTiS	0.021 ± 0.005	0.042 ± 0.009	0.237 ± 0.013	0.311 ± 0.061	$\textbf{0.071} \pm \textbf{0.008}$	2.4 ± 0.2
CTiS-2	$\textbf{0.020} \pm \textbf{0.005}$	$\textbf{0.035} \pm \textbf{0.005}$	$\textbf{0.234} \pm \textbf{0.011}$	$\textbf{0.240} \pm \textbf{0.027}$	0.078 ± 0.008	$\textbf{1.9}\pm\textbf{0.2}$

Mean NLL values for forecasting experiments and training FLOP counts (\pm standard errors). Lower is better. Best results in bold.

Model		electricity	fred-md	kdd-cup	solar-10min	traffic
TACTiS	NLL	11.028 ± 3.616	1.364 ± 0.253	2.281 ± 0.770	-2.572 ± 0.093	1.249 ± 0.080
	FLOPs ($\times 10^{16}$)	1.931 ± 0.182	1.956 ± 0.192	1.952 ± 0.208	0.174 ± 0.018	1.207 ± 0.517
TACTiS-2	NLL	$\textbf{10.674} \pm \textbf{2.867}$	$\textbf{0.378} \pm \textbf{0.076}$	$\textbf{1.055} \pm \textbf{0.713}$	-4.333 ± 0.181	-0.358 ± 0.077
	FLOPs ($\times 10^{16}$)	$\textbf{0.623} \pm \textbf{0.018}$	$\textbf{0.738} \pm \textbf{0.022}$	$\textbf{0.324} \pm \textbf{0.014}$	$\textbf{0.078} \pm \textbf{0.005}$	$\textbf{0.289} \pm \textbf{0.061}$

Model flexibility

Example forecasts of TACTiS-2 on irregular and unevenly sampled data

References

1] Alexandre Drouin, Étienne Marcotte, and Nicolas Chapados. TACTiS: Transformer-attentional copulas for time series. In ICML, 2022.

[2] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-dimensional multivariate forecasting with low-rank Gaussian copula processes.

[3] Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. de l'Institut Statistique de l'Université de Paris, 8:229–231, 1959.