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Abstract

In class-incremental learning, the model is expected to
learn new classes continually while maintaining knowledge
on previous classes. The main challenge here lies in pre-
serving the ability of the model to effectively represent prior
classes in the feature space, while adapting it to repre-
sent new classes as well. In this paper, we develop two
distillation-based objectives for class incremental learning
that leverage the structure of the feature space to both main-
tain accuracy on previous classes as well as enable learn-
ing of new classes. In our first objective termed cross-space
clustering, we propose to use the entire feature space of the
previous model to characterize specific regions that all in-
stances of a class should optimize toward, and regions that
they should stay away from. This enables the model to re-
liably cluster all instances of a class in the current space,
and further gives rise to a sense of “herd-immunity”, al-
lowing all samples of a class to jointly combat the model
from forgetting the class. As part of our second objective
termed controlled transfer, we tackle incremental learning
from the novel perspective of inter-class transfer. We de-
velop an objective that explicitly estimates and conditions
the model on the semantic similarities between incremen-
tally arriving classes and prior classes. This allows the
model to learn the incoming classes in such a way that
it maximizes positive forward transfer from similar prior
classes, and minimizes negative backward transfer on dis-
similar prior classes. We perform extensive experiments on
two benchmark datasets, adding our method on top of three
prominent class-incremental learning methodologies, and
show that our method improves performance consistently
on wide range of settings. Our code is available at this http
URL.

1. Introduction

Incremental learning is a paradigm of machine learning
where learning objectives are introduced to a model incre-

mentally in the form of phases or tasks, and the model must
possess the ability to dynamically learn new tasks while
maintaining knowledge on previously seen tasks. The dif-
ferences of this setup from a static training scenario is that
no information about the tasks are available upfront, and
the model is not allowed to retrain from scratch on encoun-
tering new tasks. A fundamental dilemma in incremental
learning is the stability-plasticity trade-off [30], where sta-
bility concerns maintaining accuracy on the previous tasks,
and plasticity concerns learning the current task completely.
In their naive form, deep learning models are too plastic,
incurring catastrophic forgetting [16] of old tasks when ex-
posed to new ones, as the model changes significantly dur-
ing training.

Class-incremental learning (CIL) [35, 29] is a specific
sub-paradigm of incremental learning where tasks are com-
posed of new classes and we seek to learn a unified model
that can represent and classify all classes seen so far equally
well. The main challenge in class-incremental learning lies
in how knowledge over a long stream of classes must be
consolidated. Regularization-based methods [21, 4, 50, 9]
quantify and preserve important parameters corresponding
to prior tasks. Another set of approaches [28, 10, 14, 43] fo-
cus on modifying the learning algorithm to ensure that gra-
dient updates do not conflict with the previous tasks. In dy-
namic architecture methods [48, 45, 25, 1, 34], the network
architecture is modified by expansion or masking when en-
countering new tasks during learning. Replay-based meth-
ods [35, 18, 13, 44, 6, 7, 27, 8, 24, 2, 40, 39, 47] store a
subset of each previous task in a separate memory, and re-
play the tasks when learning a new one, to directly preserve
the knowledge on those tasks. A wide variety of such meth-
ods have been developed recently, and have attained promis-
ing results in the CIL setting. A number of these meth-
ods [35, 18, 13, 7, 2, 40, 8, 24] use variants of knowledge
distillation [17], where the model corresponding to the pre-
vious task is stored and utilized to prevent the current task’s
model from diverging too much from its previous state.

Our work herein falls under distillation-based methods.
Prior work has advocated for utilizing distillation to directly
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constrain an example’s position or angle with its previous
position in the feature space [18], to preserve pooled con-
volutional outputs of an instance [13], or to maintain the
distribution of logits that the model’s classifier outputs on
the data [2, 35]. We argue that preserving the features or
predictions of a model on independent individual instances
are only useful to a certain extent, and do not character-
ize and preserve properties of a class captured globally by
the model as a whole. Class-level semantics may be more
important to be preserved in the class-incremental learning
setting, to holistically prevent individual classes from be-
ing forgotten. To this end, we develop an objective termed
Cross-Space Clustering (CSC) that uses points spanning
the feature space to characterize entire regions that an ex-
ample should stay away from, and those that the example
should belong to – to ensure that the class representation is
well-preserved. Our objective indirectly establishes multi-
ple goals at once: (i) it encourages the model to cluster all
instances of a given class; (ii) ensures that these clusters are
well-separated; and (iii) regularizes to preserve class cluster
positions as a single entity in the feature space. This pro-
vides for a class-consolidated distillation objective, prod-
ding instances of a given class to “unite” and thus prevent
the class from being forgotten.

Next, as part of our second objective, we tackle the class-
incremental-learning problem from a different perspective.
While all prior distillation objectives seek better ways to
preserve properties of representations in the feature space
[35, 18, 13, 7, 2, 40, 8, 24], we believe that controlling inter-
class transfer is also critical for class-incremental learning.
This comes from the observation that forgetting often re-
sults from negative backward transfer from new classes to
previous classes, and plasticity is ensured when there is pos-
itive forward transfer from prior classes to new ones [28].
To this end, we develop an objective called Controlled
Transfer (CT) that controls and regularizes transfer of fea-
tures between classes at a fine-grained level. We formulate
an objective that estimates the relative similarity between an
incoming class and all previous classes, and conditions the
current task’s model on these estimated similarities. This
encouraging new classes to be situated optimally in the fea-
ture space, ensuring maximal positive transfer and minimal
negative transfer.

A unique characteristic of our objectives is their abil-
ity to extend and enhance existing distillation-based CIL
methodologies, without any change to their methodologies.
We verify this by adding our objectives to three prominent
and state-of-the art CIL methods that employ distillation
in their formulation: iCARL [35], LUCIR [18] and POD-
Net [13]. We conduct thorough experimental evaluations on
benchmark incremental versions of large-scale datasets like
CIFAR-100 and ImageNet subset. We perform a compre-
hensive evaluation of our method, considering a wide vari-

ety of experimental settings. We show that our method con-
sistently improves incremental learning performance across
datasets and methods, at no additional cost. We further ana-
lyze and present ablation studies on our method, highlight-
ing the contribution of each of our components.

2. Related Work

2.1. Incremental Learning

In the incremental learning setting, a model is required to
consistently learn new tasks, without compromising perfor-
mance on the old tasks. Incremental learning methodolo-
gies can be split into five major categories, each of which
we review below.

Regularization-based methods focus on quantifying the
importance of each parameter in the network, to prevent the
network from excessively changing the important parame-
ters pertaining to a task. These methods include EWC [21],
SI [50], MAS [4] and RWalk [9]. These importance es-
timates are used later to constrain the appropriate weights
when learning a new task.

Algorithm-based methods comprise of methods that
seek to avoid forgetting from the perspective of the network
training algorithm. They modify gradients such that updates
to weights do not not deteriorate performance on previ-
ously seen tasks. Methods such as GEM [28], A-GEM [10],
OGD [14] and NSCL [43] fall under this category.

Architecture-based methods, modify the network ar-
chitecture dynamically to fit more tasks, by expanding the
model by adding more weights [48, 45], or masking and al-
locating subnetworks to specific tasks [38], or by gating the
parameters dynamically using a task identifier [1].

Exemplar-based methods (also called replay-based or
rehearsal methods) assume that a small subset of the class
can be stored in a memory. They replay the class later along
with the incoming new classes, directly preventing them
from being forgetten. One set of works focus on reducing
the recency bias due to the new classes being in majority at
every phase [44, 6, 18, 7]. Another set of works focus on
optimizing which samples to choose as exemplars to better
represent the class distributions [27, 5].

Distillation-based methods use the model learned until
the previous task as a teacher and provide extra supervi-
sion to the model learning the current tasks (the student).
Since the entire datasets of the previous tasks are inacces-
sible, these methods typically enforce distillation objectives
on the current data [26, 12], data from an exemplar memory
[18, 13, 35, 7, 2], external data [24] or synthetic data [51].
Since our method falls under this category, we extend our
discussion on related methods below.

Early works in this category distill logit scores [26, 35]
or attention maps [12] of the previous model. iCARL [35]
proposes to enforce distillation on new tasks as well exem-



plars from old tasks, along with herding selection of exem-
plars and nearest-mean-of-exemplars (NME) based classi-
fication. GD [24] calibrate the confidence of the model’s
outputs using external unlabelled data, and propose to dis-
till the calibrate outputs instead. LUCIR [18] introduces
a less-forget constraint that encourages the orientation of a
sample in the current feature space to be similar to the sam-
ple’s orientation in the old feature space. Apart from that,
LUCIR proposes to use cosine-similarity based classifiers
and a margin ranking loss that mines hard negatives from
the new classes to better separate the old class to addition-
ally avoid ambiguities between old and new classes. POD-
Net [13] preserves an example’s representation throughout
the model with a spatial distillation loss. The authors of SS-
IL [2] show that general KD preserves the bias due to addi-
tional classes, and propose to use task-wise KD. Co2L [8]
introduces a contrastive learning based self-supervised dis-
tillation loss that preserves the exact feature relations of
a sample with its augmentations and other samples from
the dataset. The authors of GeoDL [40] introduce a term
that enhances knowledge distillation by performing KD
across low-dimensions path between the subspaces of the
two models, considering the gradual shift between models.

The main difference of our cross-space clustering objec-
tive from these works is that we do not optimize to preserve
the properties of individual examples, and instead preserve
the previously learned semantics or properties of each class
in a holistic manner. Our formulation takes into account the
global position of a class in the feature space, and optimizes
all samples of the class towards the same region, making
the model indifferent to instance-level semantics. Further,
classes are supervised with specific ”negative” regions all
over the feature space, also intrinsically giving rise to better
separation between class clusters.

Our controlled transfer objective, on the other hand, at-
tempts to regularize transfer between tasks. MER [36],
an algorithm-based method is related to our high-level
objective. MER works in the online continual learning
setup, combining meta-learning [15, 31] with replay. Their
method optimizes such that the model receives weight up-
dates are restricted to those directions that agree with the
gradients of prior tasks. We tackle a similar objective, how-
ever in a different perspective of using the structure of the
feature space of the previous model to align the current fea-
ture space, in order to maximize transfer. Our novelty here
lies in how we explicitly estimate inter-class semantic sim-
ilarities in a continual task stream, and utilize them to ap-
propriately position new tasks representations, regularizing
transfer.

2.2. Knowledge Distillation

Hinton et al. [17] introduced knowledge distillation (KD)
in their work as a way to transfer knowledge from an ensem-

ble of teacher networks to a smaller student network. They
show that there is dark knowledge in the logits of a trained
network that can give more structure about the data, and use
them as soft targets to train the student. Since then, a num-
ber of other works have explored variants of KD. Attention
Transfer [49] focused on the attention maps of the network
instead of the logits, while FitNets [37] also deal with inter-
mediate activation maps of a network. Several other papers
have enforced criteria based on multi-layer representations
of a network [46, 19, 20, 3, 22].

Among these, our controlled transfer objective shares
similarities with a few works that propose to exploit the
mutual relation between data samples for distillation. Tung
and Mori [41] propose a distillation objective that enforces
an L2 loss in the student that constraints the similarities be-
tween activation maps of two examples to be consistent with
those of the teacher. The authors of Relational KD [32] ad-
ditionally propose to preserve the angle formed by the three
examples in the feature space by means of a triplet distil-
lation objective. Extending this direction, Correlation Con-
gruence [33] models relations between examples by means
of kernels, to enforce the same objectives with better rela-
tion estimates.

The difference of our controlled transfer objective from
these works lies in the high-level objective in the context
of the incremental learning setting, as well as the low-level
formulation in terms of the loss objective. All the above
works propose to use sample relations in the feature space
to provide additional supervision to a student model that
learns the same classes from scratch, by regularizing the
feature relations of the student. Our objective also exploits
sample relations in the feature space, however, it does not
seek to preserve feature relations between data points or to
model higher-order similarities in the feature space, which
are not relevant in the incremental learning scenario. The
main challenge in incremental learning is in how we can
reduce the effect that a new class has on the representation
space, to minimize forgetting.

Our novelty lies in how we estimate a measure of rela-
tive similarity between an unseen class and each previously
seen class, and utilize them to control where the new sam-
ples are located in the embedding space, in relation to the
old samples. Our specific formulation indirectly promotes
forward transfer of features from prior classes similar to the
new class, and prevents negative backward transfer of fea-
tures from the new class to dissimilar previous classes.

3. Method

After a brief introduction to the problem setting in
Sec. 3.1, we explain in detail each of our objectives in
Sec. 3.2 and Sec. 3.3 respectively, and discuss the final ob-
jective function in Sec. 3.4.
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Figure 1. We illustrate our cross-space clustering (CSC) objective. We show instances from 5 different classes and their positions in the
the spaces of FTt−1

ϕ and FTt
ϕ respectively. Classes are well represented in FTt−1

ϕ , however their representations are dispersed in the FTt
ϕ .

Here we illustrate the constraint imposed on an instance of the violet class, based on the cluster position of its own class (indicated by the
green arrows) and the positions of every other class (indicated by the red arrows). Note how the exact same constraint is applied on all
instances of a class (illustrated here with 2 instances of the violet class). (best viewed in color)

3.1. Problem Setting

In the incremental learning paradigm, a set of tasks
Tt = {τ1, τ2, · · · , τt} is introduced to the model over time,
where Tt represents the tasks that the model has seen un-
til time step t. τt denotes the task introduced at time step
t, which is composed of images and labels sampled from
its corresponding task data distribution: τt = (xτt

i , yτti ) ∼
pτtdata. Each task τt contains instances from a disjoint set
of classes. FTt denotes the model at time step t, once it
has learned the set of tasks Tt. Without loss of generality,
FTt can be expressed as a composition of two functions:
FTt(x) = (FTt

ϕ ◦ FTt

θ )(x), where FTt

ϕ represents a feature
extractor, and FTt

θ denotes a classifier. The challenge in in-
cremental learning is to learn a model that can represent and
classify all seen classes equally well, at any point in the task
stream.

While training FTt on the current task τt, the model
does not have access to all the data from previous tasks.
Exemplar-based methods [35, 5, 44, 27, 6] sample a very
small coreset of each task data et ∈ τt at the end of task
τt and store it in a memory buffer Mt = {e1, e2, · · · , et},
which contains the coresets of all tasks seen until time t.
When learning a new task at time step t, the task’s data τt is
combined with samples from the memory containing exem-
plars of each previous task Mt−1. Therefore, the dataset
that the model has at time step t is Dt = τt ∪ Mt−1. In
distillation-based methods, we assume access to the pre-
vious model FTt−1 which has learned the stream of tasks
Tt−1. The model FTt−1 is frozen and not updated, and is

instead used to guide the learning of the current model FTt .
Typically, distillation-based methods constrain the model
by distilling features [18, 13], attention maps [12] or log-
its [26] of data points in the current dataset Dt. Effectively
utilising the previous model is key to balancing stability and
plasticity. Excess constraints tied to the previous model can
prevent the current task from being learned, and poor con-
straints can lead to easy forgetting of previous tasks.

3.2. Cross-Space Clustering

Our cross-space clustering objective leverages the en-
tire feature space of FTt−1 , to identify specific regions that
all instances of a class are optimized to stay within, and
other harmful regions that they are prevented from drifting
towards. Since all the samples from a dataset cannot be ac-
cessed at once, we instead approximate points from the en-
tire data distribution using mini-batches. We illustrate our
cross-space clustering objective in Fig. 1.

Consider that the model FTt is trained on mini-batches
{xi, yi}ki=1 sampled from Dt. Our cross-space clustering
objective enforces the following loss on the model:

LCSC =
1

k2

k∑
i=1

k∑
j=1

((
1− cos(FTt

ϕ (xi),FTt−1

ϕ (xj))
)

∗ ind(yi == yj)

)
(1)

where ind is an indicator function that returns 1 when its
inputs are equal and -1 otherwise, and cos(a, b) denotes the
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Figure 2. We illustrate our controlled transfer objective. We show the positions of instances from five random classes taken from previous
tasks τx;x < t, and one unseen incoming class from the current task τt, in FTt−1

ϕ and FTt
ϕ respectively. With our objective, the new task

instances are regularized to position themselves appropriately, to prevent negative transfer to dissimilar classes, and to encourage positive
transfer from similar classes (best viewed in color)

cosine similarity between two vectors a and b.
Physical Interpretation: For pairs of samples xi and

xj , FTt(xi) is enforced to minimize cosine distance with
FTt−1(xj) when they are of the same class (yi == yj), and
maximize cosine distance with FTt−1(xj) when they are of
different classes (yi! = yj). We expand upon the objective
and its implications separately below.

Explanation: Consider that there are l examples of class
n in the considered batch k, and hence k−l samples belong-
ing to classes other than n.

First of all, sample xi ∈ n is allowed to see the pre-
vious feature positions of all of the l samples of the same
class, and is regularized to be equally close to all these po-
sitions. Since multiple positions are used in the previous
feature space and equal constraints are applied, points only
see an approximation of its class (cluster) in the previous
feature space, and do not see individual feature positions.
This inherently removes the dependency of the distillation
on the specific position of the sample within its class, and
instead optimizes the sample to move towards a point that
can preserve the class as a whole. This also serves a more
flexible constraint, as an example is not required to maintain
its exact same position [18, 13], and can move freely within
the characterized region.

Next, every sample xi belonging to a class n in the
batch is given the exact same constraints with no difference.
This leads to all of them being optimized jointly to a single
stark region belonging to their class. Repeating this process
for several iterations implicitly leads to model to implicitly
cluster all samples of a class in the current feature space
FTt in the specific characterized regions. With respect to

clustering, an important point is that our loss is cross-space
in the sense, it does not encourage clustering of features of
a class using features from the same model [8], as cluster-
ing within the same model neither exploits prior knowledge
about the classes, nor imposes any constraints on the lo-
cation of the clusters. Our formulation instead encourages
a model to keep all these clusters at specific points pro-
vided by the previous feature space, thereby directly distill-
ing and preserving the cluster positions in the feature space
as well. Hence, our objective uses approximate cluster po-
sitions from FTt−1 (as explained in the previous paragraph)
to in-turn cluster samples at specific positions in FTt . Since
all samples are optimized to cluster at the same region and
preserve the relative position of the region, all points of the
class are optimized to unite and jointly protect the class.
Such a formulation gives rise to a sense of herd-immunity of
classes from forgetting, which better preserves the classes
as the model drifts.

Finally, with very few exemplars stored per-class in the
memory, our objective proposes to maximally utilize the en-
tire memory1 as well as the current task, leveraging them to
identify negative regions that an instance is maintained to
lie away from. In our particular formulation, xi belonging
to class n is enforced to stay equally away from the posi-
tions of all other k − l examples from the entire previous
space. This indirectly tightens the cluster of class n in FTt

along multiple directions in the feature space.
Differences from prior work: Prior distillation-based

methods [18, 13, 40] only apply sample-to-sample cross-

1A batch of sufficient size typically contains at least one sample from
each previous class, serving as a rough approximation of the memory



space constraints, to preserve the representational proper-
ties of the previous space. The core difference of our
method from all others lies in how it applies class-to-region
constraints. Here, class denotes how all samples of a class
are jointly optimized with the same constraints, and region
denotes how the samples are optimized towards and away
from specific regions instead of towards individual points.

3.3. Controlled Transfer

Catastrophic forgetting has been characterized to arise
due to the inability to access enough data of previous tasks
[44, 18, 6], change in important parameters [21, 50, 4], rep-
resentation drift [26, 13, 8], conflicting gradients [28, 10,
14, 43] and insufficient capacity of models [48, 45, 1]. All
these works ignore the semantic similarities between tasks
and their relation to forgetting. We argue that knowing the
degree of semantic similarity between two classes can, in
fact, be very useful in incremental learning: When a previ-
ous class is dissimilar to the class currently being learned,
the model must learn to treat that class distinctively and
minimally impact it, so that the semantic specialities of that
class are not erased. Conversely, when there is a previous
class which is similar to the class currently being learned,
the model must maximally transfer features from that class,
to learn the current class in the best possible way. With
these goals, we propose an incremental learning objective
that explicitly quantifies inter-class similarities, and controls
transfer between classes in every phase. Fig. 2 illustrates
our controlled transfer objective.

Notation: We first describe the general notation that
we use to denote the similarity between samples in a
space. Consider two samples xi and xj from a dataset
Dk, and a model FTk . We denote the similarity be-
tween xi and xj computed on the feature space of FTk as
zTk
xi,xj

= cos(FTk

ϕ (xi),FTk

ϕ (xj)) where cos(a, b) denotes
cosine similarity between two vectors a and b. We denote
the the normalized distribution of similarities that an indi-
vidual sample xi has with every sample in Dk, in the feature
space of FTk as

HTk

xi,Dk,T
=

{
(zTk

xi,xj
/T )∑|Dk|

g=1 (z
Tk
xi,xg/T )

}|Dk|

j=1

(2)

where T is the temperature that is used to control the en-
tropy of the distribution. HTk

xi,Dk,T
is a row matrix, where

the value in each column j of the matrix denotes the normal-
ized similarity between xi and xj , relative to every sample
in the dataset Dk.

Formulation: We first aim to estimate the similarities
between a new class Cnew ∈ τt and every previously seen
class Cold ∈ τk ∈ Tt−1. Cold is well represented the model
FTt−1 ; the new class Cnew has not yet been learned by any
model. It is not possible to use the drifting feature space of

FTt to represent Cnew; even representing Cnew once it has
been learned by FTt would heavily bias the representations
towards Cnew due to the well-known recency bias [44, 2].
Our formulation instead proposes to utilize the dark knowl-
edge that the previous model possesses about an unseen
class: if the representations of an unseen class Cnew lie
relatively close to or overlaps the class representations of
a previous class in FTt−1 , it indicates that the two classes
share semantic similarities. On the other hand, if the repre-
sentations of an unseen class Cnew lie relatively far from a
previous class in FTt−1 , it indicates that the two classes do
not have any semantic features in common. We propose to
use these approximate similarities captured by FTt−1 in our
objective explained below.

Consider a mini-batch of BTt
n of size s that contains sam-

ples {(xTt
i , yTt

i )} randomly sampled from Dt. This mini-
batch BTt

n is composed of p samples from the current task
denoted by P = (xτt

i , yτti )
p
i=1, and q samples taken from

the memory, denoted by Q = (xτk
i , yτki )

q
i=1, where k < t.

Due to the majority of samples in Dt belonging to the cur-
rent task τt, in general, p >> q. In an effort to control
the transfer between a new and an old sample, our objec-
tive regularizes the normalized similarity (closeness) that a
sample from the current task (xτt

i , yτti ) ∈ τt has with every
sample from any previous class (xτk

i , yτki ), where k < t.
This is enforced by minimizing the KL Divergence of the
similarity distribution of xτt

i ∈ P over Q, in the current
space FTt

ϕ , with the similarity distribution computed in the

previous space FTt−1

ϕ , as follows

LTransfer =
1

p

p∑
i=1

KL(Hτt
xi,Q,T ||H

τt−1

xi,Q,T ) (3)

This loss modifies the position of the current classes in
the current feature space FTt

ϕ such that they have high sim-
ilarity with (lie close to) prior classes that are very similar,
and have low similarity with (lie far from) those previous
classes that are dissimilar to it. This encourages positive
forward transfer of features to the current classes from se-
lected previous classes that are similar, as both their embed-
dings are optimized to have high similarity in the current
space. This helps the model learn the current task better by
leveraging transferred features, and lessens the impact that
the new task has on the representation space. Conversely,
this discourages (negative) backward transfer from the cur-
rent classes to specific dissimilar classes, as their embed-
dings are optimized to have low similarity in the current
space. Consequently, the features of these specific classes
are further shielded from being erased, leading to the se-
mantics of those classes being preserved more in the current
space, which directly results in lesser forgetting of those
classes.



Table 1. The table shows results on CIFAR100 when our method is added to three top-performing approaches [35, 18, 13]. The red
subscript highlights the relative improvement. B denotes the number of classes in the first task. C denotes the number of classes in every
subsequent task.

Dataset CIFAR100 ImageNet-Subset

Settings B = 50 B = C B = 50 B = C
Methods C = 1 C = 2 C = 5 C = 1 C = 2 C = 5 C = 1 C = 2 C = 5 C = 1 C = 2 C = 5

iCaRL [35] 43.39 48.31 54.42 30.92 36.80 44.19 55.81 57.34 65.97 40.75 55.92 60.93
iCaRL + CSCCT 46.15+2.76 51.62+3.31 56.75+2.33 34.02+3.1 39.60+2.8 46.45+2.26 57.01+1.2 58.37+1.03 66.82+0.8 42.46+1.71 57.45+1.53 62.60+1.67
LUCIR [18] 50.26 55.38 59.40 25.40 31.93 42.28 60.44 66.55 70.18 36.84 46.40 56.78
LUCIR + CSCCT 52.95+2.69 56.49+1.13 62.01+2.61 28.12+2.72 34.96+3.03 44.03+1.55 61.52+1.08 67.91+1.36 71.33+1.15 37.86+1.02 47.55+1.15 58.07+1.29
PODNet [13] 56.88 59.98 62.66 33.58 36.68 45.27 67.27 73.01 75.32 44.94 58.23 66.24
PODNet + CSCCT 58.80+1.92 61.10+1.12 63.72+1.06 36.23+2.65 39.3+2.62 47.8+2.53 68.91+1.64 74.35+1.34 76.41+1.09 46.06+1.12 59.43+1.2 67.49+1.25

3.4. Final Objective Function

The independent nature of our objectives make them
suitable to be applied on top of any existing method to
improve its performance. Our final objective combines
LCross−Cluster (1) and LTransfer (3) with appropriate co-
efficients:

LCSCCT = Lmethod+α∗LCross−Cluster+β ∗LTransfer

(4)
where Lmethod denotes the objective function of the spe-

cific method used, and α and β are loss coefficients for each
of our objectives respectively. We term our method CSCCT,
indicating Cross-Space Clustering and Controlled Transfer.

4. Experiments and Results
We conduct extensive experiments adding our method

to three prominent methods in class-incremental learning
[35, 18, 13].

Protocols: In the class-incremental learning setting,
prior work has experimented with two protocols: a) train-
ing with half the total number of classes in the first task,
and equal number of classes from each subsequent task
[18, 13, 44], and b) training with the same number of classes
in each task, including the first [35, 2, 7]. We experiment
with both these protocols to demonstrate the applicability
of our method. The first setting has the advantage of gain-
ing access to strong features in the first task, while the sec-
ond tests an extreme continual learning setting. Both these
settings are plausible in a real-world incremental classifi-
cation setting. On CIFAR100, the remaining 50 classes in
the first setting or the full 100 classes in the second setting
are grouped into 1, 2 and 5 classes per task. On ImageNet-
Subset, the classes are split into 2, 5 and 10 classes per task.
Hence, our experiments are conducted on long streams of
small tasks, as well as short streams of large tasks.

Datasets and Evaluation Metric: Following prior
works [18, 13, 35, 7], we test on the incremental versions
of CIFAR-100 [23] and ImageNet-Subset [35]. CIFAR100
contains 100 classes, with 500 images per class, and each
of dimension 32 × 32. ImageNet-Subset is a subset of the
ImageNet-1k dataset [11], and contains 100 classes, with

over 1300 images per class. Each image is of size 224×224.
All our results denote average incremental accuracy follow-
ing prior work [18, 13]. We follow the original papers in
their inference methodology: On LUCIR [18] and POD-
Net [13], classification is performed as usual using the clas-
sifier logits, while on iCARL [35], classification is based on
nearest-mean-of-exemplars.

Implementation Details: Following prior work [18,
13], we use a ResNet-32 and ResNet-18 on CIFAR100 and
ImageNet-Subset respectively. On CIFAR100, we use a
batch size of 128 and train for 160 epochs, with an initial
learning rate of 0.1 that is decayed by 0.1 at the 80th and
120th epochs respectively. On ImageNet-Subset, we use
a batch size of 64 and train for 90 epochs, with an initial
learning rate of 2e−2 that is decayed by 0.1 at the 30th and
60th epochs respectively. All our experiments are reported
on an exemplar memory size of 20 examples per class. We
use herding selection [35] for exemplar sampling. We set
loss coefficients α and β to 3 and 1.5 respectively.

4.1. Quantitative Results

We add our method to three state-of-the-art class-
incremental learning methodologies: iCARL [35], LUCIR
[18] and PODNet [13]. Table 1 showcases results on CI-
FAR100 and ImageNet-Subset. We see a consistent im-
provement across all these settings when CSCCT is added
to them. Specifically, on CIFAR100, adding CSCCT to
iCARL [35], LUCIR [18] and PODNet [13] provides strong
relative improvement of 2.76%, 2.28% and 1.99% respec-
tively averaged across all settings, while on the much more
high-dimensional ImageNet-Subset, adding our method to
the respective baselines provides consistent relative im-
provements of 1.32%, 1.17% and 1.35%.

Evaluating iCARL [35], LUCIR [18] and PODNet [13]
on the equal class protocol show that LUCIR [18] suffers
from a severe performance degradation due to its inherent
reliance on a large initial task, while iCARL [35] and POD-
Net [13] do not. On CIFAR100, simply adding our method
to iCARL [35] gives it strong boosts of 2.2% − 3.1% in
this setting, bringing it much closer to the state-of-the-art
PODNet [13]. Overall, our method improves performance
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Figure 3. Average accuracy on previous tasks (APT) and average
accuracy on the current task (ACT), plotted across various settings on
the CIFAR-100 dataset

Figure 4. T-SNE [42] visualizations of the base 50 classes of CI-
FAR100 in the embedding space, after all 100 classes have been
learned (Left: LUCIR [18], Right: LUCIR+CSC)

consistently across both settings, showing that our formu-
lation does not rely on a large initial task to learn strong
representations.

5. Ablation Study and Analysis
5.1. Effect of Each Component on Average Incre-

mental Accuracy

Table 2. Ablating each objective on CIFAR100. Maroon denotes
2nd best result.

Settings B = 50 B = C

Methods C = 1 C = 2 C = 5 C = 1 C = 2 C = 5

LUCIR [18] 50.26 55.38 59.4 25.4 31.93 42.28
LUCIR + CSC 52.04 55.95 60.45 27.16 32.89 42.98
LUCIR + CT 51.5 55.87 61.97 26.53 33.98 43.69
LUCIR + CSCCT 52.95 56.49 62.01 28.12 34.96 44.03

In Table 2, we ablate each component of our objective,
and show the average incremental accuracy. It can be seen
that each of our objectives can improve accuracy indepen-
dently. In particular, CSC is more effective when the num-
ber of classes per task is extremely low, while the CT objec-
tive stands out in the improvement it offers when there are
more classes per task. Overall, combining our objectives
achieves the best performance across all settings.

5.2. Effect of Each Component on Stabil-
ity/Plasticity

To further investigate how each component is useful
specifically in the incremental learning setup, we look into
how each component improves the stability and plasticity
of the model under various settings. The left plot of Fig. 3
shows the average accuracy on previous tasks (denoted as
APT), which is calculated by averaging the mean accuracy
on all previous tasks, obtained at the end of every task in
the stream. This serves as an indicator of the stability of
the model. Mathematically, APT can be expressed as

APT =

∑T
t=2

(∑t−1
k=1 Acc(τk)

t−1

)
T − 1

(5)

where Acc(τk) denotes accuracy on the test set of task k.

The right plot of Fig. 3 shows the average accuracy on
the current task (denoted as ACT), which is calculated by
averaging the mean accuracy on the tasks calculated imme-
diately after the task has been learned. This is an indicator
of the plasticity of the model. ACT is expressed as

ACT =

∑T
t=1 Acc(τt)

T
(6)

Across all considered settings, both of our objectives in-
crease stability as well as plasticity of the base model. How-
ever, the effect of the CSC objective is much more pro-
nounced on the stability of the model. This aligns with
intuition that the CSC helps in preserving previous classes
better in the representation space. At the same time, the CT
objective impacts the plasticity consistently more than the
CSC objective, as it mainly aims at appropriately position-
ing the current task samples to maximize transfer.

5.3. Embedding Space Visualization

In Fig. 4, we present T-SNE [42] visualizations of the
embedding space, without and with our CSC objective (1).
The 50 classes learned in the initial task are plotted in the
embedding spaces of both models, once all the 100 classes
have been learned. It can be seen that applying the CSC
objective results in better clusters of prior classes in the fea-
ture space, compared to the baseline. The number of over-
lapping classes are reduced to a significant extent, as our
objective ensures that the clusters are well-separated.

6. Conclusion
In this paper, we introduced two complementary

distillation-based objectives for class-incremental learning.
Our first objective called cross-space clustering clusters all
instances of a class and preserves cluster positions as a
whole using a global view of the representation space, en-
abling instances to counteract forgetting jointly. Our second
objective called controlled transfer models relationships be-
tween incoming and prior classes, and controls the positive
and negative transfer between classes. We perform exten-
sive experiments on two benchmark datasets across a wide
range of experimental settings to showcase the effectiveness
of our objectives.
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